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We study the biaxial structure of both line and point defects in a nematic liquid crystal confined within a
capillary tube whose lateral boundary enforces homeotropic anchoring. According to Landau—de Gennes
theory the local order in the material is described by a second-order @nsdrich encompasses both uniaxial
and biaxial states. Our study is both analytical and numerical. We show that the core of a line defect with
topological chargé =1 is uniaxial in the axial direction. At the lateral boundary, the uniaxial ordering along
the radial direction is reached in two qualitatively different ways, depending on the sign of the order parameter
on the axis. The point defects with charye==+1 exhibit a uniaxial ring in the plane orthogonal to the
cylinder axis. This ring is in turn surrounded by a torus on which the degree of biaxiality attains its maximum.
The typical lengths that characterize the structure of these defects depend both on the cylinder radius and the
biaxial correlation length. It seems that the core of the point defect does not depend on the far nematic director
field in the bulk limit.[S1063-651X99)07408-3

PACS numbd(s): 61.30.Cz, 61.30.Jf

[. INTRODUCTION molecules. Another advantage with liquid crystals is that
they reach equilibrium structures on experimentally acces-
Generally, in ordered media defects take different namesible time scales.
in different contexts: so they are called dislocations, discli- The nematic phase, on which we focus in this contribu-
nations, singularities, or domain walls. The study of thesdion, exhibits in general both point and line defects that are
defects is traditionally one of the most important fields ofconventionally classified through theapological charge M
physics[1]. This is due to their presence in connection with (also called thelisclination index[1,4]. This is defined with
diverse physical phenomena, where their contribution is crurespect to the surrounding nematic director fieJdvhich is
cial and often exhibits a universal behavior. They appear as singular exactly at the defect: around the defect the director
consequence of the universal concept of broken symmetryptates by the angleM =r. For point defects thetrength| M|
either associated with a phase transition, or due to the topds an integer, while for line defects it can also be half an
logical characteristics of the confining bound§®}. Defects  integer, by thehead-tailinvariance of the nematic director.
in ordered media are singular regions exhibiting order pa- The excess free energy associated with defects is in most
rameter configurations that cannot be transformed into a hazases roughly proportional td? [8]. Consequently, defects
mogeneous ground state via continuous transformations. with |M|>1 appear only rarely. Here, following the
general, at a defect site some continuum field describing aandau—de Gennes theory, we employ a second-order tensor
defectless state of the system is not uniquely defined. Th@ to describe the local molecular order: it encompasses
core of the singularity is indeed the region in space where awithin the same setting both uniaxial and biaxial states. A
finer description of the states experienced by the system idefect forn is generally not so foQ, and soQ is fit to
needed to remedy such an apparent failure of the continuumxplore the biaxiabtructureof the uniaxial defects.
theory: it mostly consists of a different phase with higher There have been various studies devoted to the structure
energy than the surrounding. The linear dimension of thef both point and line defects in nematic liquid crystals; the
core is roughly given by the correlation length of the relevantfollowing lists of references, though far from being exhaus-
order parameter field employed to explore it. tive, witness the interest attracted, respectively, by these
In this respect, the majority of experiments were carriedtypes of defects9-21], [2,10,21-23 Nevertheless, despite
out in various liquid crystal phas¢3]. This is because of the this endeavor, several issues remained open. Among them
rich variety of qualitatively different defects exhibited by are the detailed analysis of the biaxial structure of defects
these fluids: they are reminiscent of singularities in otherand the effects of confinement on their characteristic fea-
condensed medid.,4,5 and physical fields, such as cosmol- tures. These questions have been answered only in part in
ogy|[6,7], which are often less accessible experimentally. 0rf9,16,18,19,21,2R Here we further explore the effect of cy-
the other hand, it is relatively easy and inexpensive to prelindrical confinement on the biaxial structures of both line
pare adequate liquid crystal samples. The morphology of and point defects in uniaxial nematic liquid crystals.
defect can be controlled by choosing a suitable liquid crystal The plan of the paper is the following. In Sec. Il we
phase, a confining geometry, and a surface anchoring conditroduce the mathematical model employed throughout the
tion. On the micron length scale defect structures can easilgaper. In Sec. lll we illustrate our main results, which are
be observed optically, due to the optical anisotropy of thes¢hen discussed in the last section.
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Il. MODEL

A. Free energy

The local ordering of a nematic liquid crystal can be de-
scribed by a tensor order parameft&6,24]:

3
Q=§l sie®8, (1)

where the orthogonal unit vectoesare clearly the eigenvec-

tors of Q, ands; are the corresponding eigenvalues, that is,

Qe=s,e. By Eq. (1), the tensorQ is symmetric because
Q"=Q; it is further required to be traceless:

3
terZl 5=0. 2

ConsequentlyQ is in general defined by five independent
parameters. Three of them determine the orientation of th
eigenvectors, and the remaining two the eigenvalues.

In the uniaxial ordering two eigenvalues are equal, and s&/SO
only three independent parameters are needed to describeta/9—8[(T—T,)/(Tin—T.)1}/4,

nematic configurationQ can then be given the form

1)'

nen— =I

. ®

o=
where the scalas is the uniaxial order parameter, and the
unit vectorn is the nematic director pointing along the local
optic axis. In Eq.3) s can have either sign: when it is posi-
tive the ensemble of molecules representedbiends to be
aligned alongn, whereas whes is negative it tends to lie in
the plane orthogonal to.
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wherelL is an elastic constant which does not depend on the
temperature. This description corresponds to the approxima-
tion with equal Frank elastic constants for uniaxial nematics
[26]. The bulk free-energy densitly, is a potential that pro-
motes the uniaxial order in an undistorted nematic liquid
crystal. It is conventionally described by an expansioQin
up to the fourth ordef8]:

fo=A(T—T,)trQ>— B tr Q3+ C(tr Q?)2. (6)
Here A, B, C are positive material constantd, is the
temperature, andr, is the nematic supercooling temp-
erature. ForT>T, , the potentialf, attains a local mini-
mum at the isotropic phase, whereas fOT, this
local minimum ceases to exist. The material constants in
Eq. (6) are chosen so that the minimizer fyf is a uniaxial
order tensor like that in Eq(3). Within this model the
isotropic-nematic phase transition in the bulk occurs at the
temperaturdl |\ =T, + B2/24AC. Moreover, the equilibrium
value of the uniaxial scalar order paramesgy in Eq. (3)
depends on the temperaturesyyT):=sp{3
where  sp:=SeTin)

=/(8A/2C)(T,y—T,)=B/4C.

Here we will only be concerned with strong anchoring
conditions, and so we need not consider any contribution to
the free energy from the boundary.

B. Lyuksyutov constraint

In most cases the-N phase transition is weakly first or-
der, so reflecting relatively small values of the material con-
stantB. Deep in the nematic phadg is approximately an
order of magnitude smaller than bo#(T, —T) and C.

In practice, various perturbations can make a confined hus, for weak elastic distortions a good approximation for

liquid crystal exhibit weakly biaxial states, especially in the
vicinity of a defect forn. Thus, the representation f@ in
Eq. (3) is no longer valid throughout the region occupied by

both f andf, is the following[27]:
f~fp~A(T—T,)trQ*+ C(tr Q?)?2.

the material, and use has to be made of the complete reprey,is function attains its minimum for a value ofQ@? that
sentation in Eq(1). In a real sample the state represented bycan aiternatively be expressed in terms of the equilibrium

Q changes from point to point, and §bis to be regarded as
a tensor field. Whereve® =0, the nematic order is locally
lost and the fluid becomdsotropic. A convenient quantity
to measure the degree of biaxiality is the paramg@ede-
fined by[25]

2_q_ (trQ%)?

(rQ?)°%’

which ranges in the intervdlo,1]. In all uniaxial stateg3?
=0, and a state with maximal biaxiality would correspond to
B?=1.

The free-energy densitiyof a nematic liquid crystal can
be expressed as the sum of two terms:

B (4)

f=fe+fb.

They are, respectively, thelasticand thebulk free-energy

value of s within this approximation:

A(T,—T) 2si,

rQ*=—¢ 3

)

In our model this is to be regarded as a constraint@or
Thus, we assume that the orientational order of a liquid crys-
tal responds to local distortions in a way that leave®?r
unchanged, even for strong distortions. Two facts concerning
this constraint are worth noting.

(i) Within this approximation the liquid crystal cannot
melt locally and become isotropic, becaW@deannot vanish.
From a physical point of view, thiscenariois plausible in
the deep nematic phase, where melting becomes exceedingly
costly.

(i) In Eq. (6) only the cubic term makes the uniaxial
states preferred to the biaxial ones. Thus, we will keep this

densities. The former depends on the distortion in space dem in as a perturbation to the free-energy density on the

the tensor fieldQ; within a simplified model it can be given
the form

fe=L|VQ/?, ©)

states that minimize the leading termsfin.

Henceforth we take the constraint in K@) as valid. Con-
sequently, only one parameter is needed to determine all ei-
genvalues of).
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C. Parametrization e 5

We study a nematic liquid crystal confined within an in-
finite cylindrical cavity with radiusR. The cylindrical coor-
dinates are represented By,9,z}, and the corresponding
unit vectors along the coordinate axes are e;, ande,.

We confine attention to distortions where the eigenvectors of
Q can be expressed as € 1

<

€,=C0S¢e +sinpe,, €=-—singe +CoSpe,, =€y,
)

where g is an angle ranging in the whole real axis. Thus, in e
going from a point within the cylinder to the next the eigen- 3
vectors ofQ can only rotate around the, axis. This ex-
cludes, for example, any distortion twisted along the axis °§=u|
the cylinder.

FIG. 1. The nematic states described by the order paranjeter

| lines: uniaxial states with a positive eigenvalue and nematic
: . . director alongg, (i=1, ¢=0;i=2, ¢=2x/3; =3, y=—27/3).

It_ is egsny che(_:kgd that both Co_nstralnts E@.and_ (7) Dashed lines: uniaxial states with a negative eigenvalue and nem-
are identically satisfied when the eigenvalue€ére given  aiic director alonge (i=1, y=m i=2, y=—m/3; =3, o

the following representation in terms of a single angte =7/3). Dotted lines: states with maximal degree of biaxiality.

2 2 T
$1735qC0SY,  $2= ~ 3SeqCOY Y 5

This exchanges; ands,, mapse; into e, , ande, into
—e;, while leaving boths; ande; unchanged: by Eql), it
) has no effect orQ. The identity

2 T

S3=— §seqcos( Y= 3/ 9

Qle,)=Q

T 2T
Moreover, the degree of biaxiality defined in Eg) can be 2’3

expressed as a function @f

will play a central role in the following. In particular, it en-
. (10 sures that bothy and ¢ can suffer a jump without causing
any discontinuity inQ. We shall exploit this indeterminacy
to represent a continuous fiel@ through discontinuous

V.VhiCh _is peripdic WiFh periodr/3. Fori11,2,3, the con- fields ¢ and#, whenever this does not cause a divergence in
figurations with = (i —1)27/3— 7 correspond to uniaxial the free-energy functional.

states with negative order parameter and nematic director
alonge , while the configurations withy= (i —1)2/3 cor- )
respond to uniaxial states with opposite order parameter, but D. Scaling

respectively the same director. It easily follows from Eq. |n the strong anchoring limit the only relevant character-

(10) that these are the only zeros Bf in [—m,7]. The istic length entering the model is the biaxial correlation
states with other values af reflect biaxial molecular distri-  |ength (see Appendix

butions. The degree of biaxiality attains its maximum §or
=(j—1)m/6,je{l,...,8. The essential features of this rep- [ 2L
resentation foQ are illustrated in Fig. 1. b*= 3BSyq

Through Eqs(8) and(9) we describe all biaxial structures
admissible in our model by use of only two parameters, . . o .
namely,e and. The tensoQ delivered by Eq(1) can then Ilt ca{]hea.slly\//%m_s?ed mt ii”?_SNOf thhe ur][|aX|a_It_correIat|on
be regarded as a function gfandy, which, however, is not engthéy:= (Tin=T,) atthe phase transition as

injective. There are indeed transformations in the parameters

cog

B?=1—16 cody co§( - g

+’7T
Itz

(12

¢ and ¢ that leaveQ unchanged. Two of them are immedi- _&n [Sed Tin) 13
ate consequences of the parametrization itself: they are em- b—'3 Sed T)
bodied by the identities
_ _ For later use, we measure the free enefgin terms of
) - ) + 2k 1 ] - + k I ) .
Qe h)=Qle.¥ ™. Qled)=Qletkm.y) F0==RL§q and the order parameter in terms
valid for all relative integers. Changingy into ¢+ 2k or ~ =Se(Tin): thus, in the followingF —F,F ands—sps. We

¢ into ¢+km does not affectQ, because its eigenvalues further introduce the reduced temperature:=(T
remain the same and its eigenvectors just get reversed. Be=T, ) /(T\y\—T,) and measure all lengths relative to the
sides these trivial transformations, there is another which isylinder radiusR, so thatr—Rr, z—Rz §,—Ré,, &,
not so, that is, —Ré,, V= (1R)V; in these unitsR=1, si=—37. For
convenience, we also define tleecess free energys AF
o+ 52_77_ lﬂ]- (11) :=F —Fp,k, WhereF,,, denotes the free energy of a bulk-

o= 3 undistorted nematic.
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In terms of these definitions one obtains the followingwhich represent uniaxial states with nematic director algng
dimensionless expression for the excess free energy of thend opposite scalar order parameters. Clearly, by Eq.the

nematic liquid crystal stored in a cylinder with lendth

+h/2
f rdrf dz(—ob+oe , (14
where
1
O'b==1—8(1_COS ), (15
rumg Vit 4= 7| IV of
. sirt(y+ 772/3)003’-<,o . sinzzpzsinzgo . as
r r
The corresponding Euler-Lagrange equations are
1 sin3y ) T
Vzw—g—g 3 —ZSIF{Z - §) |V ¢|?
2{sin 2(y+ m/3) Jcog e+ sin 2y sirf ¢}
+ 2 =0,
(17)
and
sm2( v )V2¢+(v¢ V y)sin 2 (¢ g”
+5in 26 Sir(y+ Z/f)_smzwzo. (18)
r

In these equation&V a=(daldr)e + (daliz)e, and VZa
=5%al or?+ (LIr)(dal or) + 3al 922, for a either ¢ or .

E. Boundary conditions

same states are also represented by the paif8,0} and
{ml2,7}, respectively. Besides EL9), Q will also be sub-
ject to eitherQ|,—o=Q+ or Q|;=o=Q,- .

The equilibrium nematic structures subject to these
boundary conditions were obtained numerically from the
above Euler-Lagrange equations by using the over-relaxation
method[28].

IIl. RESULTS
A. Line defects

We first restrict attention to distortions whe@eonly var-
ies with ther coordinate. With the terminology introduced in
[29], possible minimizers for this one-dimensional problem
are the escaped radial structueR) and two qualitatively
different planar radial solutiond’R) with either positive or
negative scalar order parameterrat0 (respectively, de-
noted by PR and PR). In the genuinely uniaxial descrip-
tion, both PR structures would exhibit a line defect with
strength 1 along the ax[4].

It is also expedient recalling the uniaxial ER structure
[30] for the role it plays in our study of point defects. In this
solution both boundary conditior@,, andQ,, are met by
simply rotating the eigenvectors @ while r spans the in-
terval [0,1]. In our setting, it is represented by the pair of
functions{ ¢gg, ¥er}, Where

a
@er(r) =5 2 arctarr, gr=0. (22

The corresponding excess free energ Bgg=87h in di-
mensionless units.

On the contrary, in the PR solutions the eigenvectors re-
main fixed relative to the framge, , €y, €}, so thate=0
for both: the uniaxial states at=0 andr =1 are connected
through anexchangebetween the eigenvalues 6§ [22];
here this is described as a change in the arglehich starts
from O atr=1 and reaches eitheri3 or — /3 atr =0, in
the solutions PR and PR , respectively. We denote by

We assume that the lateral boundary of the cylinder enypr, and pg_ the functions ofr that describe these solu-
forces the strong homeotropic anchoring condition so thations: their graphs are shown in Fig(a®

the nematic order is uniaxial along with positive order
parameter:

1
Q|r=1:Qr+‘=Seq(er®er_§|)- (19
This state can be described by the gdair ¢} ={0,0}, which
by Eqg.(11) is completely equivalent to the pditr/2,27/3}.

It follows from Eq. (14) that for the integral to converge,

only two pairs{¢,#} are admissible on the cylinder axis,

namely,{0,27/3} and{0,— 7/3}. They correspond to the fol-
lowing tensors:

QZ+=:Q(0,27T/3):Seq( e,®e,— %I ) (20

Q.- :=Q(0,~ m/3)=—Q;., (21)

While ¢pg_ ranges in the intervdl— 7/3,0], thus cross-
ing no uniaxial state for all &r<1, ¢pr, crosses ar
=r,n the uniaxial state withyy= /3, which has negative
order parameter and nematic director alayg Figure Zb)
illustrates the degree of biaxiality of both solutions for
R/ &~ 10.

In the PR_ solution the nematic ordering attains the maxi-
mal biaxiality atr,; andrp,, where 0<rp; <r ,<rp,<1.

For the PR solution, however, there is a single value of
r with maximal biaxiality; this will be denoted by, . The
influence of the confinement on these parameters is shown in
Fig. 3. ForR> ¢, they all come close to &,, yielding the
size of the defect core in the bulk.

WhenR/¢£,=0 there are analytic expressions for both PR
solutions. Although this limit is unphysical the solutions ex-
hibit the general features recalled above. In this limit and for
¢=0, the free energy in Eq14) reduces to
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@
3W/” AF/AFrxg| ==
PR,
1.5 15
ER
O\ @ i , '
0.5
0.5 PR-
0
05| AD i = % 2 4 & & 10 12 14 Rg
-1 FIG. 4. The excess free energyr for the ER, PR, and PR
0 0.2 04 06 08 MR structures normalized to the excess free enek@yy for the ER
structure, for different values d®/¢&, .
5 (b)
0.9 After multiplying both sides of Eq(24) by r ' we arrive at
08 t a first integral in the form
0.7 P
06 PR 1 ., ,
05 2(x) =c+sirfy, (25)
0.4
03 PR. wherec is an integration constant. Inserting this expression
0.2 N for x' into Eq. (23) and requiringAFpr<cc , one obtains
0.1 c=0. A further integration of Eq(25), subject to the bound-
%% 0.2 0.4 0.6 0.8 R ary conditionsy(1)=2m/3 or (1)=— =/3, corresponding

to the PR or the PR solution, respectively, leads to
FIG. 2. Spatial structure of the PRand PR solutions.(a)

=y(r) for different values oR/&,; ¢=0. At r=0, ¢=27x/3 in 41 T
the PR. solution andy¢=— /3 in the PR solution. The curves Yprs(r)=arcco ) ~ 3
labeled with(i), (i), and (iii) correspond to R/&,)%=1350, 135, 3ri+l
and 0, respectivelyb) g2=B2(r) for (R/&,)?=135. (26)
dom () 3—r* T
_(r)=arcco$ —— | — =,
16wh (1(1 ) siry PR 3+r4) 3
FPR=—J' —x'°+——|rdr, (23
3 Jol\4 r2

for which AFPR+=87-rh and AFpr =(87/3)h in dimen-
. . - .. sionless units.
wherey:=¢+ m/3, and a prime denotes differentiation with g eycess free energies for the ER and the PR solutions
respect tor. The corresponding Euler-Lagrange equationgee piotted in Fig. 4 as functions &&,. One sees that the
reads as PR, solution is always the most energetic among them.
There is a critical value of the rati®/¢,, close to 10.7,
2 sin 2y marking a transitiofi31] between the ER and the PRsolu-
= (24 tion: below this value the former stores more energy than the
latter. It is known from[32] that this transition has indeed a
more complex structure: when the ER solution loses stabil-
T/ ity, there is a range of values f&/ &, where the least ener-

(rx")’

r

3 getic solution isplanar polar with line defect33] (PPLD),
1 that is, a solution with two biaxiadscapeslong the axis of
2.5 the cylinder, resembling the uniaxial disclination with
2 strength3. The PPLD solution breaks the symmetry pre-
1E T sumed in our parametrization, and so it escapes our model,
' which instead captures the transition to the P8olution,
1 Tor  To Tun  Th2 actually prevailing over the PPLD solution f&t/ ¢, suffi-
05 ciently small. Henceforth we takie/£,>10, so that the ER
solution is the absolute minimizer of the free-energy func-

%0 2 4 & & 10 12 14Rrp tional. S _ o
To find out in which regime the Lyuksyutov constraint is

FIG. 3. The influence of confinement on the characteristicdcceptable, we compare the biaxial PRolution to the

lengthsr . for the PR structures. For the PRsolution,r, is either  uniaxial PR, solution, which requires melting at the cylinder
b1, Funs OF I'yp, While for the PR solution it is justr, . axis. To determine the RRsolution, we seh=¢, and allow
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AF/AFix y Sy/n €))
(i) 1
2 IA'
I \\
15 0.8 [0
.
0.6 “’,”J\\\‘ 77
1 T u
A
05 0.4 | & (i)
0 2 //4/;// \\\\Qtl\
%4 06 08 1 12 14 P . ////”\XQ\\\—\ @)
FIG. 5. The excess free energyF for both the PR and the 02 04 06 0.8 /R
PR, structures normalized to the excess free enet§yy for the
ER structure, for different values of the rajid{ 7) := &,(7)/&(7). (i)
(RIE,)2=135, (ii) (R/&;)2=1350. 20w (b)
for spatial variations o in Eq. (3): it is easily shown that in \\\ | @)
dimensionless units the free energy is then expressed by 0.8 \}‘\Q\ (i)
\ 12}
47h (1 1 s 4, 3 0.6
FPF%:T rdr| —(rs°=2s +sM)+s’ +— - \
0 N r 0.4 \e—— (iii)
0 @
The corresponding Euler-Lagrange equation is 0.2 \\\\
s 3s 1 RS
'+ ———— — (’TS_ 352+ 233)20. (28) 02 04 06 0.8 r/R
T g
i Vid ©
Figure 5 shows the excess free energy of both the BRd o
the PR solution as a function of the ratiou(7) /ﬁ\\ ” (i)
iy
= Ey(7)£(r) =2\~ 47+ 2+ 2 [0 81/3\3+ yO— 87 be- o8
tween the nematic biaxial and uniaxial correlation lengths / f % \W
(see Appendix The “deep nematic” phase corresponds to 0.6 I‘p‘ /| M— (iii)
the regime wheregw(7)>1. Just below thé-N phase transi- /:j/ ‘\ / \ \;\
tion, for which u(1)=%, the isotropic solution is preferred. 0.4 /“,‘/ ‘w leH— (i)
There exists a critical temperature below which the crossover x/‘f‘g’ /H\ \
to the PR solution (obtained within the Lyuksyutov con- 02t |/ / \ j \YQ\VV (iv)
straind takes place. In reality, the value of@? drops at the //// | Q
defect core of the PRsolution[17,18, so pushing the criti- //0 Z‘J i 4\ 56 0% /R

cal temperature towards higher values.
FIG. 6. The graphs of the function® =y(r,z), (b) ¢
B. Point defects = (r,z), and(c) B%= B(r,z) for (R/£,)?=135, and different val-
Here we focus on the biaxial structure of point defectsteS OfZ () z=0, (i) z=Az (i) z=2Az, (iv) z=3Az, where
with strengthlM|=1 , whereQ also depends on thecoor- Az/R=0.05. The_center of the defect core is afz)=(0,0). The
dinate. The free energy of the ER solution is invariant unde?ra%i?rijﬁz 'zr;/g(i”;}(af)ofpi r(b) Jg:iﬁ;etg?ntiﬁgstg{n ation
the transformation that reverses the signgek in Eq. (22). @ ¢ ‘ un '

Thus, domains with opposite ER structures are equally likely
to arise in an infinitely long cylinder. Wherever two such the PR solution, on the cylinder axis it matches both ER

domains join together, a point defect with topological chargedomains, which are uniaxial with positive order parameter. It
+ 1 appears on the cylinder aXi®9,34]. The resulting struc- is remarkable that the PRRsolution, which would never be
ture, which is often referred to as ERR&scaped radial with  energetically preferred in the absence of point defects, is
point defects is metastable and tends to relax towards thandeed relevant to their biaxial structure.

topologically equivalent ER structure. An ERPD structure is In this study we restrict attention to a single defect of
generally produced on cooling the liquid crystal from its iso-either sign: this effectively amounts to assuming that the
tropic phase. Each cross section through a defect exhibits distance between two adjacent defects is larger tHRns?®
distortion resembling a PR solution, singe has opposite that their mutual attraction becomes negligipd2]. Within
signs on the two sides of the section, and so must vanish oour model the equilibrium biaxial structure of a defect is
it. Thus, this section plays the role of a domain wall. Only described by the functiong= ¢(r,z) and = i(r,z): they

the PR, solution can be accommodated in it, because, unlikere represented in Figs. 6, 7 together with the degree of bi-
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(@)
z/&,
] 178
1 2
. N\
(b)
rt/rz
FIG. 7. Two-dimensional plot oB? for R/&,= 100 in the vari- 1
ablesu:=Inr (for r=10 %) and z It clearly indicates the cross
section of the torus exhibiting a maximal degree of biaxiality. 08
axiality 82. The plane az=0 exhibits a structure similar to 0.6
the one shown in Fig.(2), where the nematic staterat 0 is 04
described by the paife, ¢} ={0,27/3}. On the other hand, )
just above this plane, but still a&=0, the ER structure pre- 0.2
scribes the paif/2,0}, which by the transformation in Eq.
(11) corresponds to the same state. This discontinuity would, 0O 0 20 60

X ; . 80 R/
however, cause a divergence in the free-energy functional, %

because it also involved. In our calculations we avoided FIG. 8. (3) The cross section of the biaxial torus f&¥&,
such a divergence by expressing both the figldsnd¢ and  _ 11 5 () Influence of the confinement on the aspect ratio of the

their gradients in the Euler-Lagrange equations through ongross section. The torus width is2 while its thickness is &, .
and the same representation. We privileged the “perspecgircies mark calculated points.

tive” of the ER solution, and so at=0 we switched from
the pairi ¢, i} for r=ry, to the pairie+ m/2,2m/3— Y} for - yeliminary results are shown in Fig.(t8. We plan to

r<rys, With ry, the point wherey=/3: as in[35], the  ; oqant 5 detailed study focused on the confining effect of
discontinuity ing at this point does not make the free-energy,y,o geometry on the biaxial torus elsewhere.
functional infinite. The value ofp atr=r, remains arbi-

trary, reflecting the degeneracy of the eigenvalued af the
(r,z) plane.

The resulting structure is characterized by the following The main topic of this contribution is the detailed biaxial
qualitative features: some are already evident from Figsstructure of nematic line and point defects with strength
6(c), 7, which show the graph of the functigg?= 8?(r,z). [M|=1 in a cylindrical cavity enforcing homeotropic an-
The symmetry plane a=0 exhibits auniaxial ring with  choring. We mainly built on the work by Lavrentovich and
radiusr =r, surrounded by biaxial zones with maximal bi- co-workers[12,36, Penzenstadler and Trehjf], Gartland
axiality at the ringsr=r,; andr=ry,, as in the PR solu- and co-worker$17-19, and Rosso and Virggl6].
tion studied above;83(ry;,0)=B%(ry,0)=1 with 0<r, We limited attention to the nematic low temperature re-
<r,n<rp2, though these values ofare different from those gime, where a uniaxial liquid crystal responds to distortions
for the genuine PR solution. Just abovéor below) z=0 the by entering biaxial states, rather than melting. We treated
uniaxial ring disappears. Farther away from this plane, botlonly structures with no twist deformation exhibiting cylindri-
radiar,; andr, survive, but they vary witlz: they approach cal symmetry. Twisted structures might appear for relatively
each other, and eventually mergezat +z,,. For |z|>z,;  low values of the twist Frank elastic constant relative to the
the function 82 never reaches 1, and it exhibits a single bend and splay constar{i3].
maximum atr =r(z), which monotonically decreases with  Within this framework we obtained two qualitatively dif-

z The value ofB?(r,(2),z) drops to3 atz= *z,,. ferent line defect core structures, referred to as Ridd

In other words, the uniaxial ring with negative order pa- PR, , that basically differ by the sign of the uniaxial order
rameter lying in the symmetry plane is surrounded Hdyi-a parameters at the very defect cores0 in PR, ands
axial torus where the degree of biaxiality attains its maxi- >0 in PR.). Our results confirm calculations of Sigillo
mum. ForR large enough(“saturated” regime, the torus et al.[23] based on a molecular approach. In the PRruc-
cross section is circular with radiug~0.8¢,, as shown in ture the line defect is surrounded by a cylinder with radiys
Fig. 8@). In this regime rp;~4.2¢,, r,~5.0¢,, rp,  exhibiting maximal degree of biaxiality. The RRstructure,
~5.8¢,, 2,1~0.8%,, z,,~1.6£,. For smaller values oR  which is more energetic, can be characterized by three co-
the torus cross section becomes prolate along thieection.  axial cylinders with radiar,,<r,,<rp, displaying, in the
The way the above characteristic lengths depend on the cowrder, maximal biaxiality 1,1, rp2), and negative uniaxial
finement resembles the one obtained for line defects. Somardering in the azimuthal directiorr (,). For equal Frank

IV. CONCLUSIONS
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elastic constants,~1.7&,, ryn~rp~2.3,, rpz~3.7¢, in  nity (INCO Copernicus Project IC15-CT96-0744

the regimeR>Rq,~5.5¢,, where for typical liquid crystals

¢,~10 nm. Below this regime, confinement effects become APPENDIX: CORRELATION LENGTHS

significant, pushing characteristic radia towards zero, _ _ o o
roughly linearly withR. Note that a homeotropic anchoring To obtain estimates for both the uniaxial and biaxial cor-
with strengthW prevails only if RW/K>1, whereK is a relation lengths, we express the tengprin the Cartesian
typical nematic Frank elastic constant. Ror=5x 1012 J/m ~ coordinate system witke; ,e;,es}: €, is in the direction of
and R~Rg,~55 nm, this requiresV>10"* J/n? for finite the x axis, along which variations in space are only allowed.
size effects to be observed. In addition, the radius must b&he corresponding dimensionless free-energy density is

small enough R<4.4¢,~45 nm) for a PR core structure

to correspond to the absolute minimizer. For typical liquid _ E £(782—253COS 3t s4) + 2 d_l// 2+ d_s 2
crystals these limits are rather hard to reach experimentally. 3 gﬁ dx dx
It is also to be noted that in the limit for small valueshthe (A1)

validity of the Lyuksyutov constraint is questionable, as is
the validity of the elastic approach. Thus, in this regime theWe first take the uniaxial casge., #=0), and locally(at
results are more of an academic interest. x=0) we perturb the order parameter g, from its equi-

We explored in detail the biaxial structure of a point de-librium value s(7)=s.,, wheres(r)=0 for 7>1 ands(r)
fect displaying cylindrical symmetry. Recent results =(3+,9—87)/4 for r<1. We lets= Seqt As(X) and ex-
[9,16,17 have shown that this structure is in most casespand Eq.(A1) about equilibrium, up to the second order in
stable relative to the uniaxial solution. The center of the corezs. The solution to the corresponding Euler-Lagrange equa-
is uniaxial along the symmetry axis, with positive order pa-tion reads asAs=Asye ¥¢(", where £(7) is the nematic

rameter; it is surrounded by a uniaxial ring with negativecorrelation lengthat the reduced temperature
degree of order and radiug,,. The azimuthal plane through

the center of the defect has the PRtructure typical of a line

defect: this structure can thus be characterized by the radia

run,» fp1, @ndry,, which are, however, approximately twice (

as large as for the line defect. The ring witkr,,, is in the —

center of the torus displaying maximal biaxiality. In the satu- \/;

rated regime R>10¢£,) the torus cross section is circular &(7) =14 \/5

with diameter 2,=r,,—ry;. For equal elastic nematic con- I for r<1.

stants, we obtained,;~4.2¢,, r,,~5.0¢,, rpx,~5.8%,. 9 3

The position of the uniaxial ring is similar to the one retrace- \/_4TﬂL 51T 5V9-8r

able in Gartland’s pioneering simulatiofi37]. Below the (A3)

saturated regime the torus cross section takes a shape pro-

lated in the direction of the cylinder axis. The quantityé, defines the value of the correlation length at
Our preliminary results indicate that in the limR/&,  the|-N phase transition, i.e&,= &(1).

—o the core structure of point defects is exactly the same e next limit attention to the nematic phaée., r<1),

for both spherical and cylindrical confinements. This sug-get S(X)=Seq, and perturb locallyy from its equilibrium

gests that the core structure does not depend on the far dizjye (y=0). The same approximation described above now

rector field, if the confining cavity is large enough comparedeads to defining the biaxial correlation length as
to &, . We will focus elsewhere on this universal feat(88].

for =>1 (A2)
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