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We study the biaxial structure of both line and point defects in a nematic liquid crystal confined within a
capillary tube whose lateral boundary enforces homeotropic anchoring. According to Landau–de Gennes
theory the local order in the material is described by a second-order tensorQ, which encompasses both uniaxial
and biaxial states. Our study is both analytical and numerical. We show that the core of a line defect with
topological chargeM51 is uniaxial in the axial direction. At the lateral boundary, the uniaxial ordering along
the radial direction is reached in two qualitatively different ways, depending on the sign of the order parameter
on the axis. The point defects with chargeM561 exhibit a uniaxial ring in the plane orthogonal to the
cylinder axis. This ring is in turn surrounded by a torus on which the degree of biaxiality attains its maximum.
The typical lengths that characterize the structure of these defects depend both on the cylinder radius and the
biaxial correlation length. It seems that the core of the point defect does not depend on the far nematic director
field in the bulk limit. @S1063-651X~99!07408-5#

PACS number~s!: 61.30.Cz, 61.30.Jf
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I. INTRODUCTION

Generally, in ordered media defects take different nam
in different contexts: so they are called dislocations, dis
nations, singularities, or domain walls. The study of the
defects is traditionally one of the most important fields
physics@1#. This is due to their presence in connection w
diverse physical phenomena, where their contribution is c
cial and often exhibits a universal behavior. They appear
consequence of the universal concept of broken symme
either associated with a phase transition, or due to the to
logical characteristics of the confining boundary@2#. Defects
in ordered media are singular regions exhibiting order
rameter configurations that cannot be transformed into a
mogeneous ground state via continuous transformations
general, at a defect site some continuum field describin
defectless state of the system is not uniquely defined.
core of the singularity is indeed the region in space wher
finer description of the states experienced by the system
needed to remedy such an apparent failure of the contin
theory: it mostly consists of a different phase with high
energy than the surrounding. The linear dimension of
core is roughly given by the correlation length of the relev
order parameter field employed to explore it.

In this respect, the majority of experiments were carr
out in various liquid crystal phases@3#. This is because of the
rich variety of qualitatively different defects exhibited b
these fluids: they are reminiscent of singularities in ot
condensed media@1,4,5# and physical fields, such as cosmo
ogy @6,7#, which are often less accessible experimentally.
the other hand, it is relatively easy and inexpensive to p
pare adequate liquid crystal samples. The morphology o
defect can be controlled by choosing a suitable liquid cry
phase, a confining geometry, and a surface anchoring co
tion. On the micron length scale defect structures can ea
be observed optically, due to the optical anisotropy of th
PRE 601063-651X/99/60~2!/1858~9!/$15.00
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molecules. Another advantage with liquid crystals is th
they reach equilibrium structures on experimentally acc
sible time scales.

The nematic phase, on which we focus in this contrib
tion, exhibits in general both point and line defects that
conventionally classified through theirtopological charge M
~also called thedisclination index! @1,4#. This is defined with
respect to the surrounding nematic director fieldn, which is
singular exactly at the defect: around the defect the dire
rotates by the angle 2Mp. For point defects thestrengthuM u
is an integer, while for line defects it can also be half
integer, by thehead-tail invariance of the nematic director.

The excess free energy associated with defects is in m
cases roughly proportional toM2 @8#. Consequently, defect
with uM u.1 appear only rarely. Here, following th
Landau–de Gennes theory, we employ a second-order te
Q to describe the local molecular order: it encompas
within the same setting both uniaxial and biaxial states
defect for n is generally not so forQ, and soQ is fit to
explore the biaxialstructureof the uniaxial defects.

There have been various studies devoted to the struc
of both point and line defects in nematic liquid crystals; t
following lists of references, though far from being exhau
tive, witness the interest attracted, respectively, by th
types of defects:@9–21#, @2,10,21–23#. Nevertheless, despit
this endeavor, several issues remained open. Among t
are the detailed analysis of the biaxial structure of defe
and the effects of confinement on their characteristic f
tures. These questions have been answered only in pa
@9,16,18,19,21,22#. Here we further explore the effect of cy
lindrical confinement on the biaxial structures of both li
and point defects in uniaxial nematic liquid crystals.

The plan of the paper is the following. In Sec. II w
introduce the mathematical model employed throughout
paper. In Sec. III we illustrate our main results, which a
then discussed in the last section.
1858 © 1999 The American Physical Society
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PRE 60 1859BIAXIAL TORUS AROUND NEMATIC POINT DEFECTS
II. MODEL

A. Free energy

The local ordering of a nematic liquid crystal can be d
scribed by a tensor order parameter@16,24#:

Q5(
i 51

3

siei ^ ei , ~1!

where the orthogonal unit vectorsei are clearly the eigenvec
tors of Q, andsi are the corresponding eigenvalues, that
Qei5siei . By Eq. ~1!, the tensorQ is symmetric because
QT5Q; it is further required to be traceless:

tr Q5(
i 51

3

si50. ~2!

Consequently,Q is in general defined by five independe
parameters. Three of them determine the orientation of
eigenvectors, and the remaining two the eigenvalues.

In the uniaxial ordering two eigenvalues are equal, and
only three independent parameters are needed to descr
nematic configuration.Q can then be given the form

Q5sS n^ n2
1

3
I D , ~3!

where the scalars is the uniaxial order parameter, and th
unit vectorn is the nematic director pointing along the loc
optic axis. In Eq.~3! s can have either sign: when it is pos
tive the ensemble of molecules represented byQ tends to be
aligned alongn, whereas whens is negative it tends to lie in
the plane orthogonal ton.

In practice, various perturbations can make a confin
liquid crystal exhibit weakly biaxial states, especially in t
vicinity of a defect forn. Thus, the representation forQ in
Eq. ~3! is no longer valid throughout the region occupied
the material, and use has to be made of the complete re
sentation in Eq.~1!. In a real sample the state represented
Q changes from point to point, and soQ is to be regarded a
a tensor field. WhereverQ50, the nematic order is locally
lost and the fluid becomesisotropic. A convenient quantity
to measure the degree of biaxiality is the parameterb2 de-
fined by @25#

b25126
~ trQ3!2

~ tr Q2!3
, ~4!

which ranges in the interval@0,1#. In all uniaxial statesb2

50, and a state with maximal biaxiality would correspond
b251.

The free-energy densityf of a nematic liquid crystal can
be expressed as the sum of two terms:

f 5 f e1 f b .

They are, respectively, theelastic and thebulk free-energy
densities. The former depends on the distortion in spac
the tensor fieldQ; within a simplified model it can be given
the form

f e5Lu“Qu2, ~5!
-
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whereL is an elastic constant which does not depend on
temperature. This description corresponds to the approxi
tion with equal Frank elastic constants for uniaxial nemat
@26#. The bulk free-energy densityf b is a potential that pro-
motes the uniaxial order in an undistorted nematic liqu
crystal. It is conventionally described by an expansion inQ
up to the fourth order@8#:

f b5A~T2T* !tr Q22B tr Q31C~ tr Q2!2. ~6!

Here A, B, C are positive material constants,T is the
temperature, andT* is the nematic supercooling temp
erature. ForT.T* , the potentialf b attains a local mini-
mum at the isotropic phase, whereas forT,T* this
local minimum ceases to exist. The material constants
Eq. ~6! are chosen so that the minimizer off b is a uniaxial
order tensor like that in Eq.~3!. Within this model the
isotropic-nematic phase transition in the bulk occurs at
temperatureTIN5T* 1B2/24AC. Moreover, the equilibrium
value of the uniaxial scalar order parameterseq in Eq. ~3!
also depends on the temperature:seq(T)ªs0$3
1A928@(T2T* )/(TIN2T* )#%/4, where s0ªseq(TIN)
5A(3A/2C)(TIN2T* )5B/4C.

Here we will only be concerned with strong anchorin
conditions, and so we need not consider any contribution
the free energy from the boundary.

B. Lyuksyutov constraint

In most cases theI -N phase transition is weakly first or
der, so reflecting relatively small values of the material co
stant B. Deep in the nematic phaseB is approximately an
order of magnitude smaller than bothA(T* 2T) and C.
Thus, for weak elastic distortions a good approximation
both f and f b is the following @27#:

f ' f b'A~T2T* !tr Q21C~ tr Q2!2.

This function attains its minimum for a value of trQ2 that
can alternatively be expressed in terms of the equilibri
value ofs within this approximation:

tr Q25
A~T* 2T!

2C
5

2seq
2

3
. ~7!

In our model this is to be regarded as a constraint forQ.
Thus, we assume that the orientational order of a liquid cr
tal responds to local distortions in a way that leaves trQ2

unchanged, even for strong distortions. Two facts concern
this constraint are worth noting.

~i! Within this approximation the liquid crystal canno
melt locally and become isotropic, becauseQ cannot vanish.
From a physical point of view, thisscenariois plausible in
the deep nematic phase, where melting becomes exceed
costly.

~ii ! In Eq. ~6! only the cubic term makes the uniaxia
states preferred to the biaxial ones. Thus, we will keep
term in as a perturbation to the free-energy density on
states that minimize the leading terms inf b .

Henceforth we take the constraint in Eq.~7! as valid. Con-
sequently, only one parameter is needed to determine al
genvalues ofQ.
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C. Parametrization

We study a nematic liquid crystal confined within an i
finite cylindrical cavity with radiusR. The cylindrical coor-
dinates are represented by$r ,q,z%, and the corresponding
unit vectors along the coordinate axes areer , eq , and ez .
We confine attention to distortions where the eigenvector
Q can be expressed as

e15coswer1sinwez , e252sinwer1coswez , e35eq ,
~8!

wherew is an angle ranging in the whole real axis. Thus,
going from a point within the cylinder to the next the eige
vectors ofQ can only rotate around theeq axis. This ex-
cludes, for example, any distortion twisted along the axis
the cylinder.

It is easily checked that both constraints Eqs.~2! and ~7!
are identically satisfied when the eigenvalues ofQ are given
the following representation in terms of a single anglec:

s15
2

3
seqcosc, s252

2

3
seqcosS c1

p

3 D ,

s352
2

3
seqcosS c2

p

3 D . ~9!

Moreover, the degree of biaxiality defined in Eq.~4! can be
expressed as a function ofc:

b251216 cos2c cos2S c2
p

3 D cos2S c1
p

3 D , ~10!

which is periodic with periodp/3. For i P$1,2,3%, the con-
figurations withc5( i 21)2p/32p correspond to uniaxia
states with negative order parameter and nematic dire
alongei , while the configurations withc5( i 21)2p/3 cor-
respond to uniaxial states with opposite order parameter,
respectively the same director. It easily follows from E
~10! that these are the only zeros ofb2 in @2p,p#. The
states with other values ofc reflect biaxial molecular distri-
butions. The degree of biaxiality attains its maximum forc
5( j 21)p/6, j P$1, . . . ,6%. The essential features of this re
resentation forQ are illustrated in Fig. 1.

Through Eqs.~8! and~9! we describe all biaxial structure
admissible in our model by use of only two paramete
namely,w andc. The tensorQ delivered by Eq.~1! can then
be regarded as a function ofw andc, which, however, is not
injective. There are indeed transformations in the parame
w andc that leaveQ unchanged. Two of them are immed
ate consequences of the parametrization itself: they are
bodied by the identities

Q~w,c!5Q~w,c12kp!, Q~w,c!5Q~w1kp,c!,

valid for all relative integersk. Changingc into c12kp or
w into w1kp does not affectQ, because its eigenvalue
remain the same and its eigenvectors just get reversed.
sides these trivial transformations, there is another whic
not so, that is,

$w,c%˜H w1
p

2
,
2p

3
2cJ . ~11!
of

f
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.

,
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This exchangess1 and s2, mapse1 into e2 , and e2 into
2e1, while leaving boths3 ande3 unchanged: by Eq.~1!, it
has no effect onQ. The identity

Q~w,c!5QS w1
p

2
,
2p

3
2c D

will play a central role in the following. In particular, it en
sures that bothw and c can suffer a jump without causin
any discontinuity inQ. We shall exploit this indeterminacy
to represent a continuous fieldQ through discontinuous
fieldsw andc, whenever this does not cause a divergence
the free-energy functional.

D. Scaling

In the strong anchoring limit the only relevant charact
istic length entering the model is the biaxial correlati
length ~see Appendix!

jbªA 2L

3Bseq
. ~12!

It can easily be expressed in terms of the uniaxial correla
lengthjnªAL/A(TIN2T* ) at theI -N phase transition as

jb5
jn

3
Aseq~TIN!

seq~T!
. ~13!

For later use, we measure the free energyF in terms of
F0ªRLseq

2 and the order parameter in terms ofs0

5seq(TIN): thus, in the followingF˜F0F ands˜s0s. We
further introduce the reduced temperaturetª(T
2T* ) /(TIN2T* ) and measure all lengths relative to th
cylinder radiusR, so that r˜Rr, z˜Rz, jb˜Rjb , jn

˜Rjn , “˜(1/R)“; in these unitsR51, seq
2 52 1

2 t. For
convenience, we also define theexcess free energyas DF
ªF2Fbulk , whereFbulk denotes the free energy of a bulk
undistorted nematic.

FIG. 1. The nematic states described by the order parametec.
Full lines: uniaxial states with a positive eigenvalue and nem
director alongei ( i 51, c50; i 52, c52p/3; i 53, c522p/3).
Dashed lines: uniaxial states with a negative eigenvalue and n
atic director alongei ( i 51, c5p; i 52, c52p/3; i 53, c
5p/3). Dotted lines: states with maximal degree of biaxiality.
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PRE 60 1861BIAXIAL TORUS AROUND NEMATIC POINT DEFECTS
In terms of these definitions one obtains the followi
dimensionless expression for the excess free energy of
nematic liquid crystal stored in a cylinder with lengthh:

DF5
16p

3 E
0

1

r dr E
2h/2

1h/2

dzS 1

jb
2
sb1seD , ~14!

where

sbª
1

18
~12cos 3c!, ~15!

seª
1

4
u“cu21sin2S c2

p

3 D u“wu2

1
sin2~c1p/3!cos2w

r 2
1

sin2c sin2w

r 2
. ~16!

The corresponding Euler-Lagrange equations are

¹2c2
1

jb
2

sin 3c

3
22 sinF2S c2

p

3 D G u“wu2

1
2$sin@2~c1p/3!#cos2w1sin 2c sin2w%

r 2
50,

~17!

and

sin2S c2
p

3 D¹2w1~“w•“c!sinF2S c2
p

3 D G
1sin 2w

sin2~c1p/3!2sin2c

2r 2
50. ~18!

In these equations“a5(]a/]r )er1(]a/]z)ez and ¹2a
5]2a/]r 21(1/r )(]a/]r )1]2a/]z2, for a eitherw or c.

E. Boundary conditions

We assume that the lateral boundary of the cylinder
forces the strong homeotropic anchoring condition so t
the nematic order is uniaxial alonger with positive order
parameter:

Qur 515Qr 1ªseqS er ^ er2
1

3
I D . ~19!

This state can be described by the pair$w,c%5$0,0%, which
by Eq. ~11! is completely equivalent to the pair$p/2,2p/3%.

It follows from Eq. ~14! that for the integral to converge
only two pairs$w,c% are admissible on the cylinder axi
namely,$0,2p/3% and$0,2p/3%. They correspond to the fol
lowing tensors:

Qz1ªQ~0,2p/3!5seqS ez^ ez2
1

3
I D , ~20!

Qz2ªQ~0,2p/3!52Qz1 , ~21!
he

-
t

which represent uniaxial states with nematic director alongez
and opposite scalar order parameters. Clearly, by Eq.~11! the
same states are also represented by the pairs$p/2,0% and
$p/2,p%, respectively. Besides Eq.~19!, Q will also be sub-
ject to eitherQur 505Qz1 or Qur 505Qz2 .

The equilibrium nematic structures subject to the
boundary conditions were obtained numerically from t
above Euler-Lagrange equations by using the over-relaxa
method@28#.

III. RESULTS

A. Line defects

We first restrict attention to distortions whereQ only var-
ies with ther coordinate. With the terminology introduced i
@29#, possible minimizers for this one-dimensional proble
are the escaped radial structure~ER! and two qualitatively
different planar radial solutions~PR! with either positive or
negative scalar order parameter atr 50 ~respectively, de-
noted by PR1 and PR2). In the genuinely uniaxial descrip
tion, both PR structures would exhibit a line defect wi
strength 1 along the axis@1#.

It is also expedient recalling the uniaxial ER structu
@30# for the role it plays in our study of point defects. In th
solution both boundary conditionsQz1 andQr 1 are met by
simply rotating the eigenvectors ofQ while r spans the in-
terval @0,1#. In our setting, it is represented by the pair
functions$wER,cER%, where

wER~r !ª
p

2
22 arctanr , cER[0. ~22!

The corresponding excess free energy isDFER58ph in di-
mensionless units.

On the contrary, in the PR solutions the eigenvectors
main fixed relative to the frame$er , eq , ez%, so thatw[0
for both: the uniaxial states atr 50 andr 51 are connected
through anexchangebetween the eigenvalues ofQ @22#;
here this is described as a change in the anglec, which starts
from 0 atr 51 and reaches either 2p/3 or 2p/3 at r 50, in
the solutions PR1 and PR2 , respectively. We denote b
cPR1 and cPR2 the functions ofr that describe these solu
tions: their graphs are shown in Fig. 2~a!.

While cPR2 ranges in the interval@2p/3,0#, thus cross-
ing no uniaxial state for all 0,r ,1, cPR1 crosses atr
5r un the uniaxial state withc5p/3, which has negative
order parameter and nematic director alongeq . Figure 2~b!
illustrates the degree of biaxiality of both solutions f
R/jb;10.

In the PR1 solution the nematic ordering attains the ma
mal biaxiality atr b1 and r b2, where 0,r b1,r un,r b2,1.

For the PR2 solution, however, there is a single value
r with maximal biaxiality; this will be denoted byr b . The
influence of the confinement on these parameters is show
Fig. 3. ForR@jb they all come close to 2jb , yielding the
size of the defect core in the bulk.

WhenR/jb50 there are analytic expressions for both P
solutions. Although this limit is unphysical the solutions e
hibit the general features recalled above. In this limit and
w50, the free energy in Eq.~14! reduces to
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DFPR5
16ph

3 E
0

1S 1

4
x821

sin2x

r 2 D r dr , ~23!

wherexªc1p/3, and a prime denotes differentiation wi
respect tor. The corresponding Euler-Lagrange equati
reads as

~rx8!85
2 sin 2x

r
. ~24!

FIG. 2. Spatial structure of the PR2 and PR1 solutions.~a! c
5c(r ) for different values ofR/jb ; w[0. At r 50, c52p/3 in
the PR1 solution andc52p/3 in the PR2 solution. The curves
labeled with~i!, ~ii !, and ~iii ! correspond to (R/jb)251350, 135,
and 0, respectively.~b! b25b2(r ) for (R/jb)25135.

FIG. 3. The influence of confinement on the characteris
lengthsr c for the PR structures. For the PR1 solution,r c is either
r b1 , r un , or r b2, while for the PR2 solution it is justr b .
After multiplying both sides of Eq.~24! by rx8 we arrive at
a first integral in the form

1

4
~rx8!25c1sin2x, ~25!

wherec is an integration constant. Inserting this express
for x8 into Eq. ~23! and requiringDFPR,` , one obtains
c50. A further integration of Eq.~25!, subject to the bound-
ary conditionsc(1)52p/3 or c(1)52p/3, corresponding
to the PR1 or the PR2 solution, respectively, leads to

cPR1~r !5arccosS 3r 421

3r 411
D 2

p

3
,

~26!

cPR2~r !5arccosS 32r 4

31r 4D 2
p

3
,

for which DFPR1
58ph and DFPR2

5(8p/3)h in dimen-
sionless units.

The excess free energies for the ER and the PR solut
are plotted in Fig. 4 as functions ofR/jb . One sees that the
PR1 solution is always the most energetic among the
There is a critical value of the ratioR/jb , close to 10.7,
marking a transition@31# between the ER and the PR2 solu-
tion: below this value the former stores more energy than
latter. It is known from@32# that this transition has indeed
more complex structure: when the ER solution loses sta
ity, there is a range of values forR/jb where the least ener
getic solution isplanar polar with line defects@33# ~PPLD!,
that is, a solution with two biaxialescapesalong the axis of
the cylinder, resembling the uniaxial disclination wi
strength 1

2 . The PPLD solution breaks the symmetry pr
sumed in our parametrization, and so it escapes our mo
which instead captures the transition to the PR2 solution,
actually prevailing over the PPLD solution forR/jb suffi-
ciently small. Henceforth we takeR/jb@10, so that the ER
solution is the absolute minimizer of the free-energy fun
tional.

To find out in which regime the Lyuksyutov constraint
acceptable, we compare the biaxial PR2 solution to the
uniaxial PRu solution, which requires melting at the cylinde
axis. To determine the PRu solution, we setn5er and allow

c

FIG. 4. The excess free energyDF for the ER, PR2 , and PR1

structures normalized to the excess free energyDFER for the ER
structure, for different values ofR/jb .
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for spatial variations ofs in Eq. ~3!: it is easily shown that in
dimensionless units the free energy is then expressed b

FPRu
5

4ph

3 E
0

1

r dr S 1

jn
2 ~ts222s31s4!1s821

3s2

r 2 D .

~27!

The corresponding Euler-Lagrange equation is

s91
s8

r
2

3s

r 2
2

1

jn
2 ~ts23s212s3!50. ~28!

Figure 5 shows the excess free energy of both the PR2 and
the PRu solution as a function of the ratiom(t)

ªjb(t)/j(t)5A2A24t1 9
2 1 3

2 A928t/3A31A928t be-
tween the nematic biaxial and uniaxial correlation leng
~see Appendix!. The ‘‘deep nematic’’ phase corresponds
the regime wherem(t)@1. Just below theI -N phase transi-
tion, for which m(1)5 1

3 , the isotropic solution is preferred
There exists a critical temperature below which the crosso
to the PR2 solution ~obtained within the Lyuksyutov con
straint! takes place. In reality, the value of trQ2 drops at the
defect core of the PR2 solution@17,18#, so pushing the criti-
cal temperature towards higher values.

B. Point defects

Here we focus on the biaxial structure of point defe
with strengthuM u51 , whereQ also depends on thez coor-
dinate. The free energy of the ER solution is invariant un
the transformation that reverses the sign ofwER in Eq. ~22!.
Thus, domains with opposite ER structures are equally lik
to arise in an infinitely long cylinder. Wherever two suc
domains join together, a point defect with topological cha
61 appears on the cylinder axis@29,34#. The resulting struc-
ture, which is often referred to as ERPD~escaped radial with
point defects!, is metastable and tends to relax towards
topologically equivalent ER structure. An ERPD structure
generally produced on cooling the liquid crystal from its is
tropic phase. Each cross section through a defect exhib
distortion resembling a PR solution, sincew has opposite
signs on the two sides of the section, and so must vanis
it. Thus, this section plays the role of a domain wall. On
the PR1 solution can be accommodated in it, because, un

FIG. 5. The excess free energyDF for both the PR2 and the
PRu structures normalized to the excess free energyDFER for the
ER structure, for different values of the ratiom(t)ªjb(t)/j(t). ~i!
(R/jb)25135, ~ii ! (R/jb)251350.
s

er

s
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ly

e

e
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e

the PR2 solution, on the cylinder axis it matches both E
domains, which are uniaxial with positive order parameter
is remarkable that the PR1 solution, which would never be
energetically preferred in the absence of point defects
indeed relevant to their biaxial structure.

In this study we restrict attention to a single defect
either sign: this effectively amounts to assuming that
distance between two adjacent defects is larger than 2R, so
that their mutual attraction becomes negligible@34#. Within
our model the equilibrium biaxial structure of a defect
described by the functionsw5w(r ,z) and c5c(r ,z): they
are represented in Figs. 6, 7 together with the degree of

FIG. 6. The graphs of the functions~a! c5c(r ,z), ~b! w
5w(r ,z), and~c! b25b2(r ,z) for (R/jb)25135, and different val-
ues of z: ~i! z50, ~ii ! z5Dz, ~iii ! z52Dz, ~iv! z53Dz, where
Dz/R50.05. The center of the defect core is at (r ,z)5(0,0). The
graphs for z50 in both ~a! and ~b! reflect the transformation
$w,c%˜$w1p/2,2p/32c% for r ,r un described in the text.
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axiality b2. The plane atz50 exhibits a structure similar to
the one shown in Fig. 2~a!, where the nematic state atr 50 is
described by the pair$w,c%5$0,2p/3%. On the other hand
just above this plane, but still atr 50, the ER structure pre
scribes the pair$p/2,0%, which by the transformation in Eq
~11! corresponds to the same state. This discontinuity wo
however, cause a divergence in the free-energy functio
because it also involvesc. In our calculations we avoided
such a divergence by expressing both the fieldsw andc and
their gradients in the Euler-Lagrange equations through
and the same representation. We privileged the ‘‘persp
tive’’ of the ER solution, and so atz50 we switched from
the pair$w,c% for r>r un to the pair$w1p/2,2p/32c% for
r ,r un , with r un the point wherec5p/3: as in @35#, the
discontinuity inw at this point does not make the free-ener
functional infinite. The value ofw at r 5r un remains arbi-
trary, reflecting the degeneracy of the eigenvalues ofQ in the
(r ,z) plane.

The resulting structure is characterized by the followi
qualitative features: some are already evident from F
6~c!, 7, which show the graph of the functionb25b2(r ,z).
The symmetry plane atz50 exhibits auniaxial ring with
radiusr 5r un surrounded by biaxial zones with maximal b
axiality at the ringsr 5r b1 and r 5r b2, as in the PR1 solu-
tion studied above:b2(r b1,0)5b2(r b2,0)51 with 0,r b1
,r un,r b2, though these values ofr are different from those
for the genuine PR1 solution. Just above~or below! z50 the
uniaxial ring disappears. Farther away from this plane, b
radiar b1 andr b2 survive, but they vary withz: they approach
each other, and eventually merge atz56zb1. For uzu.zb1
the function b2 never reaches 1, and it exhibits a sing
maximum atr 5r b(z), which monotonically decreases wit
z. The value ofb2

„r b(z),z… drops to1
2 at z56zb2.

In other words, the uniaxial ring with negative order p
rameter lying in the symmetry plane is surrounded by abi-
axial torus, where the degree of biaxiality attains its max
mum. ForR large enough~‘‘saturated’’ regime!, the torus
cross section is circular with radiusr t'0.8jb , as shown in
Fig. 8~a!. In this regime r b1'4.2jb , r un'5.0jb , r b2
'5.8jb , zb1'0.8jb , zb2'1.6jb . For smaller values ofR
the torus cross section becomes prolate along thez direction.
The way the above characteristic lengths depend on the
finement resembles the one obtained for line defects. S

FIG. 7. Two-dimensional plot ofb2 for R/jb5100 in the vari-
ablesuª ln r ~for r>1023) and z. It clearly indicates the cross
section of the torus exhibiting a maximal degree of biaxiality.
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e

preliminary results are shown in Fig. 8~b!. We plan to
present a detailed study focused on the confining effec
the geometry on the biaxial torus elsewhere.

IV. CONCLUSIONS

The main topic of this contribution is the detailed biaxi
structure of nematic line and point defects with streng
uM u51 in a cylindrical cavity enforcing homeotropic an
choring. We mainly built on the work by Lavrentovich an
co-workers@12,36#, Penzenstadler and Trebin@9#, Gartland
and co-workers@17–19#, and Rosso and Virga@16#.

We limited attention to the nematic low temperature
gime, where a uniaxial liquid crystal responds to distortio
by entering biaxial states, rather than melting. We trea
only structures with no twist deformation exhibiting cylindr
cal symmetry. Twisted structures might appear for relativ
low values of the twist Frank elastic constant relative to
bend and splay constants@8#.

Within this framework we obtained two qualitatively dif
ferent line defect core structures, referred to as PR2 and
PR1 , that basically differ by the sign of the uniaxial orde
parameters at the very defect core (s,0 in PR2 , and s
.0 in PR1). Our results confirm calculations of Sigillo
et al. @23# based on a molecular approach. In the PR2 struc-
ture the line defect is surrounded by a cylinder with radiusr b
exhibiting maximal degree of biaxiality. The PR1 structure,
which is more energetic, can be characterized by three
axial cylinders with radiar b1,r un,r b2 displaying, in the
order, maximal biaxiality (r b1 , r b2), and negative uniaxia
ordering in the azimuthal direction (r un). For equal Frank

FIG. 8. ~a! The cross section of the biaxial torus forR/jb

511.5. ~b! Influence of the confinement on the aspect ratio of
cross section. The torus width is 2r t , while its thickness is 2r z .
Circles mark calculated points.
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elastic constants,r b1'1.7jb , r un'r b'2.3jb , r b2'3.7jb in
the regimeR.Rsat'5.5jb , where for typical liquid crystals
jb'10 nm. Below this regime, confinement effects beco
significant, pushing characteristic radia towards ze
roughly linearly withR. Note that a homeotropic anchorin
with strengthW prevails only if RW/K.1, whereK is a
typical nematic Frank elastic constant. ForK'531012 J/m
and R'Rsat'55 nm, this requiresW.1024 J/m2 for finite
size effects to be observed. In addition, the radius mus
small enough (R,4.4jb'45 nm) for a PR2 core structure
to correspond to the absolute minimizer. For typical liqu
crystals these limits are rather hard to reach experiment
It is also to be noted that in the limit for small values ofR the
validity of the Lyuksyutov constraint is questionable, as
the validity of the elastic approach. Thus, in this regime
results are more of an academic interest.

We explored in detail the biaxial structure of a point d
fect displaying cylindrical symmetry. Recent resu
@9,16,17# have shown that this structure is in most cas
stable relative to the uniaxial solution. The center of the c
is uniaxial along the symmetry axis, with positive order p
rameter; it is surrounded by a uniaxial ring with negati
degree of order and radiusr un . The azimuthal plane throug
the center of the defect has the PR1 structure typical of a line
defect: this structure can thus be characterized by the r
r un , r b1, andr b2, which are, however, approximately twic
as large as for the line defect. The ring withr 5r un is in the
center of the torus displaying maximal biaxiality. In the sa
rated regime (R.10jb) the torus cross section is circula
with diameter 2r t5r b22r b1. For equal elastic nematic con
stants, we obtainedr b1'4.2jb , r un'5.0jb , r b2'5.8jb .
The position of the uniaxial ring is similar to the one retrac
able in Gartland’s pioneering simulations@37#. Below the
saturated regime the torus cross section takes a shape
lated in the direction of the cylinder axis.

Our preliminary results indicate that in the limitR/jb
˜` the core structure of point defects is exactly the sa
for both spherical and cylindrical confinements. This su
gests that the core structure does not depend on the fa
rector field, if the confining cavity is large enough compar
to jb . We will focus elsewhere on this universal feature@38#.
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APPENDIX: CORRELATION LENGTHS

To obtain estimates for both the uniaxial and biaxial c
relation lengths, we express the tensorQ in the Cartesian
coordinate system with$e1 ,e2 ,e3%: e1 is in the direction of
thex axis, along which variations in space are only allowe
The corresponding dimensionless free-energy density is

f 5
2

3 F 1

jn
2 ~ts222s3cos 3c1s4!1s2S dc

dxD 2

1S ds

dxD
2G .

~A1!

We first take the uniaxial case~i.e., c50), and locally~at
x50) we perturb the order parameter byDs0 from its equi-
librium value s(t)5seq, wheres(t)50 for t.1 ands(t)
5(31A928t)/4 for t<1. We let s5seq1Ds(x) and ex-
pand Eq.~A1! about equilibrium, up to the second order
Ds. The solution to the corresponding Euler-Lagrange eq
tion reads asDs5Ds0e2x/j(t), where j(t) is the nematic
correlation lengthat the reduced temperaturet:

~A2!

j~t!55
jn

At
for t.1

jn

A2

A24t1
9

2
1

3

2
A928t

for t<1.

~A3!

The quantityjn defines the value of the correlation length
the I -N phase transition, i.e.,jn5j(1).

We next limit attention to the nematic phase~i.e., t,1),
set s(x)5seq, and perturb locallyc from its equilibrium
value (c50). The same approximation described above n
leads to defining the biaxial correlation length as

jbª
jn

3Aseq

. ~A4!

Taking into account that 24A(TIN2T* )C/B251 and that
heres is measured in terms ofseq(TIN), we then easily re-
trace the expressions in Eqs.~12! and ~13!.
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